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ER membrane protein, has recently been identified as a novel mediator of ER-associated degradation. Yet, the biological roles  
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expression of ERLIN2 protein. Furthermore, ERLIN2 had the ability to protect breast cancer cells from ER stress-induced cell  
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Introduction 

Breast cancer cells contain a large number of genetic alterations that act in concert to create the 
malignant phenotype. For example, the up-regulation of oncogenes, such as Her2, c-MYC and CCND1, 
directly contributes to the uncontrolled proliferation of breast cancer cells. For cancer cells to survive, 
they must acquire the ability to tolerate a series of oncogenesis-associated cellular stress, such as 
proteotoxic-, mitotic-, metabolic-, and oxidative-stress (1, 2). However, very little is known about the 
genomic basis and molecular mechanisms that allow breast cancer cells to tolerate and adapt to these 
stresses.  Amplification of 8p11-12 occurs in approximately 15% of human breast cancer (HBC).  This 
region of amplification is significantly associated with disease-specific survival and distant recurrence in 
breast cancer patients (3-6).  Previous work in our laboratory, together with others,  have identified the 
endoplasmic reticulum (ER) lipid raft-associated 2 (ERLIN2, also known as SPFH2, C8ORF2) gene as 
one of several candidate oncogenes within the 8p11-12 amplicon, based on statistical analysis of copy 
number increase and over-expression (3, 4, 7).  Yet, the biological roles of ERLIN2 and molecular 
mechanisms by which ERLIN2 contributes to breast carcinogenesis remain unclear.  In this research 
project, we hypothesized that ERLIN2 plays an important role in the maintenance of malignancy and 
therapy-resistance through modulation of ERAD signaling in aggressive forms of human breast cancer.  
Accordingly, we propose that ERLIN2 represents a novel class of oncogenic factors and that targeting 
ERLIN2 may reduce the therapy resistance of aggressive breast cancers and thus improve the 
effectiveness of conventional anti-cancer drugs.  
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Figure 1.  shRNA-mediated knockdown of ERLIN2 inhibits 
anchorage-independent cell growth in breast cancer cells with 
ERLIN2 amplification. (A) Knockdown of ERLIN2 expression in 
SUM-44 and SUM-225 cells with two different shRNAs was 
confirmed by western blot. (B) Knockdown of ERLIN2 reduces 
colony formation in soft agar. SUM-44 and SUM-225 cells were 
tranfected with ERLIN2 shRNA#1 or control shRNA. The colony 
numbers were counted 3 weeks later (P < 0.05)

Body 

1. Specific Aims

This project consists of 3 specific aims:  
Aim 1: To investigate the role of ERLIN2 in the maintenance of stress- and apoptosis-resistant 
phenotypes of aggressive breast cancer cells. 
Aim 2: To elucidate the molecular mechanism by which ERLIN2 increases ER protein folding capacity 
and suppresses ER stress-induced apoptosis in breast cancer cells.   
Aim 3: To determine whether inhibition of ERLIN2 activity can enhance the effectiveness of the 
conventional anti-cancer drugs in aggressive breast cancers.   

2. Studies and Results
Task 1 (Dr. Zeng-Quan Yang). To investigate the role of endogenous ERLIN2 up-regulation in the 
maintenance of stress- and apoptosis-resistant phenotypes of aggressive breast cancer cells.  
(Months 1-16, complete) 

In our previous annual report, we have reported 
that we successfully knocked down ERLIN2 in ERLIN2-
amplified SUM-44 and SUM-225 cells using the 
lentiviral-based shRNA system. Cell growth and 
proliferation analyses showed that knockdown of 
ERLIN2 slowed the proliferation rate of SUM-44 and 
SUM-225 cells, but not MCF10A control.  In the past 
year, we continued our investigation of the effect of 
ERLIN2 knockdown on growth of breast cancer cell 
lines with or without ERLIN2 amplification.  We tested 
three ERLIN2-amplified breast cancer cell lines (SUM-
44, SUM-52, and SUM-225), and three control lines 
(SUM-102,  SUM-149 and SUM159), which do not 
have ERLIN2 amplification. We found that knockdown 
of ERLIN2 slowed proliferation rates of ERLIN2-
amplified breast cancer cells, but only had a minor effect 
on control cells, which lack ERLIN2 amplification. 
Importantly, we found that knockdown of ERLIN2 in 
SUM-44 and SUM-225 cells also suppressed anchorage-
independent growth in soft agar, one of the hallmark 
characteristics of aggressive cancer cells (Figure 1). 
Taken together, these results suggested ERLIN2 plays a 
role in cell proliferation and maintenance of transforming phenotypes in breast cancer cells with the 
ERLIN2 amplification. 

Next, we tested if amplification and over-expression of ERLIN2 enhances the resistance to a 
variety of stressors to promote breast cancer cell survival. As demonstrated in the previous annual 
report, we measured the IC50 values for the ER stress-inducing reagents Tunicamycin (Tm) or 
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Figure 2. The expression level of CHOP in SUM-225, SUM-44 
breast cancer cells and MCF10A control cells was analyzed with 
Western blot after Tm (500 ng) or Tg (400 nM) treatment.

Thapsigargin (Tg), in ten breast cancer cell lines as 
well as in MCF10A control cells. SUM-44 and SUM-
225 cells, which have ERLIN2 amplification, had 
significantly higher Tm IC50 values than cell lines 
without ERLIN2 amplification (P<0.05).  In the past 
year, we continued our investigation of the 
mechanism by which ERLIN2 facilitates the 
adaptation of breast cancer cells to the various 
cellular stresses associated with oncogenesis.  
Expression of the CCAAT/enhancer-binding protein 
(C/EBP) homology protein (CHOP) is characteristic 
of the ER stress–mediated apoptotic pathway.  In 
response to treatment with Tm or Tg, expression of 
CHOP dramatically increased in control MCF10A 
cells (Figure 2). However, induction of CHOP by Tm 
and Tg treatment was weaker or barely detectable in 
ERLIN2-amplified SUM-44 and SUM-225 cells (Figure 2).  Next, to determine whether suppressing 
ERLIN2 in breast cancer cells re-sensitizes them to ER-stress, we challenged stable ERLIN2-
knockdown SUM-44 and SUM-225 cells with Tm and Tg for 72 hours and evaluated their viability 
using the MTT assay. Knockdown of ERLIN2 resulted in increased sensitivity to Tm or Tg -induced cell 
death.  Our data suggested that over-expression of ERLIN2 may facilitate the adaptation of breast 
epithelial cells to ER stress by supporting cell growth.   

Next, we evaluated the expression of ERLIN2 in normal and cancerous human breast tissues 
using immunohistochemistry (IHC) in breast cancer tissue arrays. We first confirmed the specificity and 
sensitivity of the ERLIN2 antibody for visualizing ERLIN2 expression in formalin-fixed, paraffin-
embedded breast cancer cell lines. Consistent with the immunoblotting data, SUM-225 cells displayed 
significantly higher levels of positive staining as compared with the MCF10A control cells. The tissue 
array included 34 breast carcinomas and 17 normal breast tissue, which included 14 cases of adjacent 
normal counterparts. ERLIN2 expression was scored based on the staining intensity: 0 (negative), 
1 + (weak), 2 + (low); 3+ (moderate) or 4 + (strong). In breast carcinomas samples, 11 (32.4%) stained 
ERLIN2 strongly and 13 (38.2%) moderately. In contrast, no strong or moderate staining was observed 
in the 17 normal breast tissues. The staining intensities of ERLIN2 were significantly higher in tumor 
cells than in normal tissue cells (P = 0.001). Thus, ERLIN2 protein is significantly up regulated in a 
subset of primary breast cancer cells compared with normal breast cells. 

Task 2 ( Dr. Kezhong Zhang). To elucidate the molecular mechanism by which ERLIN2 regulates 
ER calcium levels, increases ER capacity, and suppresses ER stress-induced apoptosis in breast 
cancers. Months 6-20 

In previous reports, we have reported that the ER stress response pathway regulates ERLIN2 
protein expression through IRE1α- XBP1 in human breast epithelial cells. The regulation of ERLIN2 by 
IRE1α is through the IRE1α RNase activity, but not its kinase activity. We demonstrated that ERLIN2 
over-expression leads to expansion of the ER compartment, a possible mechanism that accounts for 
stress- and apoptosis-resistance in ERLIN2-over-expressed cells. However, we found that calcium signal 
alteration/ER calcium release is not likely the cause of resistance to apoptosis by ERLIN2 over-
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Figure 3. (A) Western blot analysis of spliced XBP1 or CHOP 
protein levels in MCF10A cells over-expressing LacZ or 
ERLIN2 in the absence or presence of tunicamycin (5µ/ml) for 
indicated time intervals (hrs). Tubulin was included as a loading 
control. (B)  Western blot analysis of CHOP protein levels in 
LacZ- or ERLIN2-over-expressing MCF10A cells in the absence 
or presence of thapsigargin (0.5µM) or Cisplatin for indicated 
time intervals. 

 
 
Figure 4. BODIPY staining of lipid droplets in the ERLIN2-
knockdown and control SUM225 cells. Magnification: 630×. 
KD, knockdown. 

expression, a result opposite to our original 
hypothesis. To further elucidate the 
mechanism by which ERLIN2 supports cancer 
cell growth and protects the cells from ER 
stress-induced cell death, we examined 
expression levels of spliced XBP1, an 
indicator of the Unfolded Protein Response 
(UPR), and CHOP/GADD153, an ER stress-
induced pro-apoptotic factor, in MCF10A cell 
over-expressing ERLIN2 or LacZ control in 
the presence or absence of ER stress or anti-
cancer chemotherapeutic drug.  In response to  
Tm treatment, expression of spliced XBP1 
protein was induced in LacZ-expressing 
control MCF10A cells in a time-dependent 
manner (Figure 3A), suggesting activation of 
the UPR in these cells. In comparison, 
ERLIN2-over-expressing MCF10A cells were 
not responsive to the tunicamycin treatment in 
ER stress response. This result suggests that 
over-expression of ERLIN2 confers a 
resistance to ER stress challenge on the cells. 
Moreover, Western blot analysis of pro-
apoptotic factor CHOP revealed that levels of 
CHOP in ERLIN2-expressing MCF10A cells 
were significantly reduced, compared to those 
in LacZ-expressing MCF10A cells, at the late 
time points of tunicamycin treatment (Figure 
2A). Together, these results suggest that 
ERLIN2 over-expression can equip cells with 
a resistance to ER stress and stress-induced 
apoptosis by modulating expression levels of 
the UPR trans-activator XBP1 and ER stress-
induced pro-apoptotic factor CHOP. 
 
 To confirm the stress mechanism 
through which ERLIN2 suppresses stress-induced apoptosis, we challenged MCF10A cells expressing 
LacZ or ERLIN2 with Tg or the anti-cancer chemotherapeutic drug, Cisplatin. Consistent with 
tunicamycin treatment, the ERLIN2-over-expressing MCF10A cells produced lower levels of CHOP 
proteins than LacZ-over-expressing MCF10A cells in response to thapsigargin or Cisplatin treatment 
(Figure 2B), thus confirming the role of ERLIN2 in protecting ER stress-induced apoptosis. 
Unexpectedly, we discovered that over-expression of ERLIN2 in human breast cancer cells promotes 
lipid droplet accumulation, an additional mechanism to help cancer cells gain a growth advantage and 
protect from stress-induced apoptosis. As shown in Figure 3, human breast cancer cell line, SUM225, in 
which the ERLIN2 gene was amplified and over-expressed, possesses abundant cytosolic lipid droplet 
contents. However, when the endogenous ERLIN2 gene was knocked down, the levels of lipid droplet 
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Figure 5. IC50 values of Bortezonib and erlotinib in SUM-225 
cells with or without ERLIN2 knockdown.  SUM-225 cells with 
ERLIN2 knockdown exhibited significantly lower Bortezonib 
IC50 values as compared with control cells (P>0.05). 

contents in the ERLIN2-knockdown SUM225 cells were significantly reduced, suggesting a requirement 
of ERLIN2 for cytosolic lipid droplet accumulation in human breast cancer cells. In addition, we found 
that ERLIN2 is required for efficient activation of sterol regulatory element-binding protein (SREBP) 
1c, the key regulator of de novo lipogenesis, in cancer cells. The precise mechanism underlying 
ERLIN2-mediated lipid accumulation remains to be elucidated in the future.  

Task 3 (Dr. Zeng-Quan Yang). To determine whether inhibition of ERLIN2 activity can enhance the 
effectiveness of conventional anti-cancer drugs in aggressive breast cancers in vitro and in vivo and 
to evaluate the potential of ERLIN2 as a therapeutic target in aggressive breast cancer.  Months 8-
24 

In order to detect whether ERLIN2 knockdown, which we have previously shown decreases general 
resistance to a variety of stresses, can enhance the effectiveness of targeted- and chemo-therapeutic 
drugs in vitro,  SUM-225 breast cancer cells with or without ERLIN2 knock-down were treated with 
conventional chemotherapeutic drugs or EGFR family inhibitors (lapatinib or erlotinib).  SUM-225 is a 
HER2-amplified breast cancer cell line. To assess the sensitivities to EGFR family inhibitors and the 
proteasome inhibitor Bortezonib, SUM-225 cells with or without ERLIN2 knockdown were treated for 
three days with a range of doses, and MTT assays were used to determine IC50 values of each drug. We 
found that SUM-225 cells with ERLIN2 knockdown exhibited significantly lower Bortezonib IC50 
values as compared with control SUM-225 
cells without ERLIN2 knockdown (Figure 
5).  However, we did not detect significant 
changes of IC50 values for EGFR family 
inhibitors in SUM-225 cells with or without 
ERLIN2 knockdown. It is reported that 
Bortezomib induces cell death by disrupting 
the ER stress responses in a wide variety of 
cancer cell lines. Our data suggests that the 
synergistic cooperation between knockdown 
of ERLIN2 and a proteasome inhibitor might 
lead to a significant decrease in proliferation 
in a subset of breast cancer cells in vitro. 

Remaining work for no-cost extension: Task 2 ( Dr. Kezhong Zhang):  During the non-cost extension 
period, remaining experiments are required to be carried out in order to more precisely address the 
mechanism by which ERLIN2 promotes breast cancer cell survival. These include: proteomic analyses 
with the protein samples from ERLIN2-over-expresing breast cancer and MCF10A model cells; and 
detection of polyubiquitinated IP3 receptor proteins in ERLIN2 knockdown cells. Task 3 (Dr. Zeng-
Quan Yang): To provide direct evidence for a role of ERLIN2 in stress- and apoptosis-resistant 
phenotypes of breast cancer in vivo, we will perform in vivo experiments using breast cancer cells with 
or without ERLIN2 knock down.  The cells will be orthotopically transplanted into the mammary fat 
pads of the left and right flanks of nude mice. Tumor growth will be monitored once a week. Mice will 
be euthanized at or more than 8 weeks after injection, and tumor volume will be determined.  Next, we 
will investigate whether inhibition of ERLIN2 activity can enhance the effectiveness of the anti-cancer 
drugs in vivo in breast cancers using xenograft models. Breast cancer cell lines with or without ERLIN2 
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knockdown will injected into the mammary fat pads of the left and right flanks of nude mice. Bi-weekly 
treatment of tumors with the drugs that have the synergistic cooperation effects with ERLIN2 
knockdown in vitro, or drug vehicle, will be initiated at 1 week after injection. Subcutaneous tumor 
volumes will be monitored by direct caliper measurement.  
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Key Research Accomplishments 

In the present study, we found that amplification of the ERLIN2 gene and over-expression of the 
ERLIN2 protein occurs in both luminal and Her2 subtypes of breast cancer. Gain- and loss-of-function 
approaches demonstrated that ERLIN2 is a novel oncogenic factor associated with the ER stress 
response pathway. The IRE1α/XBP1 axis in the ER stress pathway modulated expression of ERLIN2 
protein levels in breast cancer cells. We also showed that over-expression of ERLIN2 facilitated the 
adaptation of breast epithelial cells to ER stress by supporting cell growth and protecting the cells from 
ER stress-induced cell death. 

Reportable Outcomes 

Manuscript: 
 “ERLIN2 promotes breast cancer cell survival by modulating endoplasmic reticulum stress 
pathways"  BMC Cancer Accepted (see Appendices) 

 “Endoplasmic Reticulum Factor ERLIN2 Regulates Cytosolic Lipid Contents in Human Breast 
Cancer Cells” (2nd revision).  Biochemical Journal. 

Abstracts:  
“Endoplasmic reticulum factor ERLIN2 plays an oncogenic role by modulating ER stress response 
in breast cancer” DOD BCRP Era of Hope Meeting 2011 

“Endoplasmic Reticulum Factor ERLIN2 Preserves Oncogenesis by Regulating De novo 
Lipogenesis” DOD BCRP Era of Hope Meeting 2011 

Conclusion 

We have made significant progress in the past year in characterizing the endoplasmic reticulum 
factor, ERLIN2, in human breast cancer. We found that ERLIN2 may confer a selective growth 
advantage on breast cancer cells by facilitating a cytoprotective response to various cellular stresses 
associated with oncogenesis. In the course of these studies, we made the unexpected observation that 
ERLIN2 plays an important role in regulating cytosolic lipid content and activation of SREBP1c, a key 
lipogenic regulator in human breast cancer cells.  The information provided here sheds new light on the 
mechanism of breast cancer malignancy.  
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Abstract 

Background 

Amplification of the 8p11-12 region has been found in approximately 15% of human breast 
cancer and is associated with poor prognosis. Previous genomic analysis has led us to identify 
the endoplasmic reticulum (ER) lipid raft-associated 2 (ERLIN2) gene as one of the candidate 
oncogenes within the 8p11-12 amplicon in human breast cancer, particularly in the luminal 
subtype. ERLIN2, an ER membrane protein, has recently been identified as a novel mediator 
of ER-associated degradation. Yet, the biological roles of ERLIN2 and molecular 
mechanisms by which ERLIN2 coordinates ER pathways in breast carcinogenesis remain 
unclear. 

Methods 

We established the MCF10A-ERLIN2 cell line, which stably over expresses ERLIN2 in 
human nontransformed mammary epithelial cells (MCF10A) using the pLenti6/V5-ERLIN2 
construct. ERLIN2 over expressing cells and their respective parental cell lines were assayed 
for in vitro transforming phenotypes. Next, we knocked down the ERLIN2 as well as the ER 
stress sensor IRE1α activity in the breast cancer cell lines to characterize the biological roles 
and molecular basis of the ERLIN2 in carcinogenesis. Finally, immunohistochemical staining 
was performed to detect ERLIN2 expression in normal and cancerous human breast tissues 

Results 

We found that amplification of the ERLIN2 gene and over expression of the ERLIN2 protein 
occurs in both luminal and Her2 subtypes of breast cancer. Gain- and loss-of-function 
approaches demonstrated that ERLIN2 is a novel oncogenic factor associated with the ER 
stress response pathway. The IRE1α/XBP1 axis in the ER stress pathway modulated 
expression of ERLIN2 protein levels in breast cancer cells. We also showed that over 
expression of ERLIN2 facilitated the adaptation of breast epithelial cells to ER stress by 
supporting cell growth and protecting the cells from ER stress-induced cell death. 

Conclusions 

ERLIN2 may confer a selective growth advantage for breast cancer cells by facilitating a 
cytoprotective response to various cellular stresses associated with oncogenesis. The 
information provided here sheds new light on the mechanism of breast cancer malignancy. 
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Background 

Breast cancer cells contain a large number of genetic alterations that act in concert to create 
the malignant phenotype. For example, the up-regulation of oncogenes, such as Her2, c-MYC 
and CCND1, directly contributes to the uncontrolled proliferation of breast cancer cells. For 
cancer cells to survive, they must acquire the ability to tolerate a series of oncogenesis-
associated cellular stressors, which include DNA damage, proteotoxic-, mitotic-, metabolic-, 
and oxidative-stress [1,2]. However, very little is currently known about the genomic basis 
and molecular mechanisms that allow breast cancer cells to tolerate and adapt to these 
stresses. Amplification of 8p11-12 occurs in approximately 15% of human breast cancer 
(HBC). This region of amplification is significantly associated with disease-specific survival 
and distant recurrence in breast cancer patients [3-6]. Previous work in our laboratory, 
together with others, have identified the endoplasmic reticulum (ER) lipid raft-associated 2 
(ERLIN2, also known as SPFH2, C8ORF2) gene as one of several candidate oncogenes 
within the 8p11-12 amplicon, based on statistical analysis of copy number increase and over 
expression [3,4,7]. Yet, the biological roles of ERLIN2 and molecular mechanisms by which 
ERLIN2 coordinates ER pathways in breast carcinogenesis remain unclear. 

The ER is a cellular organelle primarily responsible for protein folding, lipid and sterol 
biosynthesis, and calcium storage. Physiological processes that increase protein folding 
demand or stimuli that disrupt the ER protein folding process can create an imbalance 
between ER protein folding load and capacity. This imbalance leads to the accumulation of 
unfolded or misfolded proteins in the ER: a condition referred to as “ER stress” [8,9]. The ER 
has evolved highly specific signaling pathways, collectively termed the “unfolded protein 
response” (UPR), to ensure protein folding fidelity and to protect the cell from ER stress. 
Upon activation of UPR, inositol-requiring protein 1 (IRE1α), the conserved ER stress sensor 
from yeasts to mammals, mediates splicing of the mRNA encoding X-box binding protein 1 
(XBP1). XBP1 serves as a potent UPR trans-activator that helps protein refolding, 
transportation, and degradation in order to bolster ER capacity and facilitate cell adaptation to 
stress [8]. However, if UPR fails to restore ER homeostasis, ER stress-associated apoptosis 
will occur [10]. As part of the UPR program, ER-associated degradation (ERAD) targets 
aberrantly folded proteins in the ER. In addition to this “quality control” function, ERAD also 
accounts for the degradation of several metabolically-regulated ER proteins [11]. 

Recent studies provide evidence that UPR and ERAD components are highly expressed in 
various tumors, including human breast cancer [12-21]. During tumor development and 
progression, increased amounts of misfolded proteins caused by gene mutations, hypoxia, 
nutrient starvation, and high-levels of reactive oxygen species lead to ER stress [22,23]. The 
activation of UPR and ERAD induces an adaptive response in which the tumor cell attempts 
to overcome ER stress to facilitate cytoprotection. In this study, we demonstrated that 
amplification and the resultant over expression of ERLIN2 occurred in both luminal and Her2 
subtypes of breast cancer. We also found that the UPR pathway, through the IRE1α/XBP1 
axis, modulated the high-level expression of ERLIN2 protein. Furthermore, ERLIN2 had the 
ability to protect breast cancer cells from ER stress-induced cell death. Thus, ERLIN2 is a 
novel mediator of ER stress response and thus amplification and over expression of ERLIN2 
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may facilitate the adaptation of breast cancer cells to the various cellular stresses associated 
with oncogenesis. 

Materials and methods 

Cell lines and cell culture conditions 

The culture conditions of of SUM breast cancer cells and the immortalized non-tumorigenic 
MCF10A cells are described in the Additional file 1: Materials and Methods. 

Genomic array CGH 

Genomic array CGH experiments were performed using the Agilent 44 K human genome 
CGH microarray chip (Agilent Technologies, Palo Alto, CA). Agilent's CGH Analytics 
software was used to calculate various measurement parameters, including log2 ratio of total 
integrated Cy-5 and Cy-3 intensities for each probe. 

Semiquantitative RT-PCR reactions 

Total RNA was prepared from human breast cancer cell lines and the MCF10A cell line by 
standard methods [3,24]. For RT-PCR reactions, RNA was converted into cDNA via a 
reverse transcription reaction using random hexamer primers. Primers were ordered from 
Invitrogen (Carlsbad, CA). A GAPDH primer set was used as a control. Semiquantitative RT-
PCR was done using the iQSYBR Green Supermix (Bio-Rad, Hercules, CA). 

Lentivirus construction and transduction of cells 

The lentiviral expression construct containing the ERLIN2 gene (pLenti-ERLIN2), was 
established as previously described [3]. The lentivirus for pLenti-ERLIN2 was generated and 
used to infect the immortalized, nontransformed mammary epithelial MCF10A cells. Control 
infections with pLenti-LacZ virus were performed in parallel with the pLenti-ERLIN2 
infections. Selection began 48 hours after infection in growth medium with 10 μg/mL 
blasticidin in the absence of either insulin or epidermal growth factor (EGF). Upon 
confluence, selected cells were passaged and serially cultured. 

Three-dimensional morphogenesis assays in matrigel 

For three-dimensional morphogenesis assays in Matrigel, cells grown in monolayer culture 
were detached by trypsin/EDTA treatment and seeded in Matrigel (BD Biosciences, San Jose, 
CA) precoated 8-well chamber slides. The appropriate volume of medium was added and 
cells were maintained in culture for 10–18 days. Phase-contrast images and immunostaining 
images were taken using bright-field and confocal microscopy. 

Lentivirus-mediated shRNA knockdown of gene expression 

We knocked down the expression of the human ERLIN2 gene in breast cancer cell lines and 
in the MCF10A cell line using the Expression Arrest GIPZ lentiviral shRNAmir system 
(OpenBiosystems, Huntsville, AL). Lentivirus was produced by transfecting 293FT cells with 
the combination of the lentiviral expression plasmid DNA and Trans-Lentiviral packaging 
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mix (OpenBiosystems. Huntsville, AL). For cell infection, viral supernatants were 
supplemented with 6 μg/mL polybrene and incubated with cells for 24 hours. Cells 
expressing shRNA were selected with puromycin for 2–3 weeks for functional studies (cell 
proliferation and colony formation assays) and for 4 to 10 days after infection for RNA 
extraction. 

Recombinant adenoviral or retrovirus infection 

Adenoviruse vectors for expressing flag-tagged IRE1α isoforms, including wild type IRE1α 
(Ad-IRE1α WT), IRE1α kinase mutant (Ad-IRE1α K599A), and IRE1α RNase mutant (Ad-
IRE1α K907A), were kindly provided by Dr. Yong Liu (Institute for Nutritional Sciences, 
Shanghai, China) and amplified using the AdEasy System (Stratagene) [25,26]. Retrovirus 
expressing spliced XBP1 was kindly provided by Dr. Lauri Glimcher (Harvard University) 
[27]. For infection of cells with adenovirus and retrovirus, cells were seeded in six-well 
plates. After 24 h, cells were infected with adenovirus expressing wild type IRE1α (Ad-
IRE1α WT), IRE1α kinase mutant (Ad-IRE1α K599A), IRE1α RNase mutant (Ad-IRE1α 
K907A), and retrovirus expressing spliced XBP1 as described previously [28,29]. 

Tissue array and immunohistochemistry (IHC) staining 

Human breast cancer tissue array was obtained from Nuclea Biotechnologies (Pittsfield, 
MA). Immunohistochemistry was performed on tumor tissue sections using the standard 
laboratory protocols [30]. Briefly, after deparaffinizing and hydrating with phosphate-
buffered saline (PBS) buffer (pH 7.4), the sections were pretreated with hydrogen peroxide 
(3%) for 10 minutes to remove endogenous peroxidase, followed by antigen retrieval via 
steam bath for 20 minutes in EDTA. A primary antibody was applied, followed by washing 
and incubation with the biotinylated secondary antibody for 30 minutes at room temperature. 
Detection was performed with diaminobenzidine (DAB) and counterstaining with Mayer 
hematoxylin followed by dehydration and mounting. Immunostained slides were blindly 
evaluated under a transmission light microscope. Areas of highest staining density were 
identified for evaluating the expression in tumors. 

Results 

ERLIN2 is amplified and over expressed in human breast cancer cells 

Recently, we used quantitative genomic PCR and array comparative genomic hybridization 
(CGH) to profile copy number alterations in 10 human breast cancer cell lines and 90 primary 
human breast cancers [3,6,31]. Analysis of our array CGH data showed that ERLIN2 gene 
was commonly amplified in 30% of the cell lines tested, as well as in 7.8% of breast cancer 
specimens tested (Figure 1A). Previously, we and several other laboratories have 
demonstrated that the 8p11-12 amplicon occurs mainly in the luminal subtype of breast 
cancer cells, such as the SUM-44 and SUM-52 cell lines. However, SUM-225 is a Her2-
amplified HBC cell line [31,32]. We also found two primary tumors, 10173 and 9895, which 
have Her2 gene amplifications in addition to the amplification of the ERLIN2 gene (Figure 
1A). To obtain further support for a potential involvement of the ERLIN2 region in breast 
cancer, we searched the published database of the Affymetrix 250 K array CGH [33]. We 
found that 42 of the 243 HBC lines and primary samples in the array exhibited amplification 
of the ERLIN2 region. Interestingly, eight of the ERLIN2-amplified samples showed co-
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amplification of the Her2 gene (Additional file 2: Figure S1). Next, we measured ERLIN2 
protein levels in ten breast cancer cell lines by Western blot analysis. In correlation with 
ERLIN2 gene amplification, ERLIN2 protein levels in SUM-44, SUM-52, and SUM-225 
cells were dramatically greater than the levels in breast cancer cell lines without ERLIN2 
gene amplification (Figure 1B). The presence of the ERLIN2 amplification in both luminal 
and Her2 subtypes of breast cancer prompted us to further investigate the role of the ERLIN2 
gene in breast cancer progression. 

Figure 1 (A) Genomic copy number profiles of the ERLIN2 region analyzed on the 
Agilent oligonucleotide array CGH in 3 SUM breast cancer cell lines and 7 primary 
breast cancer specimens. Tumors are displayed vertically and array probes are displayed 
horizontally by genome position. Log2 ratio in a single sample is relative to normal female 
DNA and is depicted according to the color scale (bottom). Red indicates relative copy 
number gain, whereas green indicates relative copy number loss. (B) ERLIN2 protein levels 
were analyzed by Western blot in ten breast cancer cell lines with or without ERLIN2 
amplification 

ERLIN2 plays a functional role in breast cancer cells 

Next, we addressed whether ERLIN2 possess transforming properties. We transduced the 
immortalized, nontransformed mammary epithelial cell line, MCF10A, with lentivirus 
expressing ERLIN2 or control LacZ. Semi-quantitative RT-PCR (qRT-PCR), Western blot 
and immunofluorescence staining confirmed the over expression of ERLIN2 protein in 
MCF10A-ERLIN2 cells (Figure 2A and Additional file 2: Figure S2). The infected MCF10A 
cells were then subjected to analyses for growth rates, growth factor-independent 
proliferation, anchorage-independent growth, and three-dimensional morphogenesis assays. 
Growth curves and colony formation assays in MCF10A cells showed that forced expression 
of ERLIN2 resulted in growth factor-independent proliferation in insulin-like growth factor-
deficient media. To further examine the effects of ERLIN2 in a context that more closely 
resembles in vivo mammary architecture, we assessed the consequences of ERLIN2 over 
expression on three-dimensional morphogenesis in Matrigel. Although MCF10A cells formed 
polarized, growth-arrested acinar structures with hollow lumens similar to the glandular 
architecture in vivo, MCF10A-ERLIN2 cells formed abnormal acini at a high frequency that 
was grossly disorganized, and contained filled lumens (Figure 2B). 

Figure 2 (A) Stable overexpressing ERLIN2 in MCF10A cells (MCF10A-ERLIN2) with 
the pLenti6/V5-ERLIN2 construct. Over expression of ERLIN2 mRNA and protein in this 
cell line was confirmed with semi-quantitative RT-PCR (right panel) and western blot assays 
(left panel). (B) Effects of ERLIN2 on mammary acinar morphogenesis. MCF10A-ERLIN2 
and control cells were cultured on a bed of Matrigel. Representative images show the 
structures with staining for actin with phalloidin conjugated to Alexa Fluor-568 (red), and 
DAPI as a marker of nuclei (blue) 

To further explore the pathophysiological function of ERLIN2 over expression, we stably 
silenced the ERLIN2 gene in SUM-44 and SUM-225 breast cancer cells using the lentiviral-
based shRNA system. To perform RNAi knockdown experiments, we utilized pGIPZ-
ERLIN2 shRNA expression constructs in which TurboGFP and shRNA were part of a 
bicistronic transcript allowing for the visual marking of the shRNA-expressing stable cells. 
qRT-PCR and Western blot analysis indicated a marked reduction in expression levels of 
ERLIN2 mRNA and protein in the stable ERLIN2-shRNA-transduced SUM-44 and SUM-
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225 cell lines as compared with the control cell lines infected with a non-silencing shRNA 
lentiviral control (Figure 3A). Among the two targeted vectors used, ERLIN2-shRNA vector 
#1 produced a more striking knockdown effect: infected SUM-225 cells had a nearly 
complete loss of ERLIN2 protein expression (Figure 3A). We did not detect any change in 
ERLIN1 mRNA and protein levels in ERLIN2-shRNA knockdown cells, thus ruling out the 
possibility of off-target effects by ERLIN2-shRNAs (Data no shown). Cell growth and 
proliferation analyses showed that knockdown of ERLIN2 slowed the proliferation rate of 
SUM-44 and SUM-225 cells, but had only a minor effect on SUM-102 and MCF10A cells, 
which lack ERLIN2 amplification (Figure 3B). Importantly, knockdown of ERLIN2 in SUM-
44 and SUM-225 cells also suppressed anchorage-independent growth in soft agar, one of the 
hallmark characteristics of aggressive cancer cells (Figure 3C). Taken together, results from 
over expression and knockdown experiments suggested ERLIN2 plays a role in cell 
proliferation and maintenance of transforming phenotypes in breast cancer cells with the 
8p11-12 amplification. 

Figure 3 shRNA-mediated knockdown of ERLIN2 inhibits monolayer and anchorage-
independent cell growth in breast cancer cells with ERLIN2 amplification. (A) 
Knockdown of ERLIN2 expression in SUM-44 and SUM-225 cells with two different 
shRNAs was confirmed by western blot. (B) In vitro growth rate of SUM-44 and SUM-225 
cells with ERLIN2 shRNA treatment compared to cells with control shRNA treatment. (C) 
Knockdown of ERLIN2 reduces colony formation in soft agar. SUM-44 and SUM-225 cells 
were tranfected with ERLIN2 shRNA#1 or control shRNA. The colony numbers were 
counted 3 weeks later (P < 0.05) 

Expression of ERLIN2 is regulated by the ER pathway through IRE1α/XBP1 

Recent studies have identified ERLIN2 both as a novel component of lipid raft domains in 
the ER membrane and as a substrate recognition factor during ERAD of activated inositol 
triphosphate receptors (IP3R) as well as other substrates [34-36]. IRE1α is the primary ER 
stress sensor implicated in the regulation of the ERAD pathway [37]. Under ER stress, IRE1α 
undergoes auto-phosphorylation to activate its RNase activity, which triggers one of the UPR 
cascades through splicing Xbp1 mRNA [8]. Previous work has demonstrated that breast 
cancer cells over express XBP1 [38,39], while we observed that SUM-44, SUM-52 and 
SUM-225 cell lines over expressed total and activated XBP1 (Additional file 2: Table S1and 
Figure S3 ). To evaluate the possibility of an association between ERLIN2 expression and the 
IRE1α-mediated UPR pathway in HBC, we inhibited IRE1α RNase or kinase activity in 
breast cancer cells. To accomplish this, we used adenoviral-based expression system to 
introduce the previously characterized IRE1 kinase dominant-negative mutant (IRE1 K599A) 
or the IRE1 RNase dominant-negative mutant (IRE1 K907A) into breast cancer cells 
[26,40,41]. We chose SUM-44 cells for this experiment because the SUM-44 cells are very 
amenable to adenovirus-mediated expression. The inhibition of the IRE1α RNase activity 
significantly reduced protein levels of ERLIN2 in SUM-44 cells (Figure 4A). In addition, 
forcible expression of wild-type IRE1α or spliced XBP1 in MCF10A cells resulted in 
increased expression levels of endogenous ERLIN2 protein (Figure 4B and C). However, 
quantitative real-time RT-PCR analysis showed that over expression of IRE1α or spliced 
XBP1 did not increase expression of the ERLIN2 mRNA (Data not shown). Next, we asked 
whether ERLIN2 expression was induced by stress inducers in normal mammary epithelial 
cells. Our group routinely cultures MCF10A cells in serum-free, growth factor-supplemented 
media. Oncogenesis-associated conditions, such as nutrient or growth factor depletion, can 
cause pathophysiologic ER stress [22,23]. When MCF10A cells were cultured in media 
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lacking insulin or EGF, expression levels of endogenous ERLIN2 protein in MCF10A were 
increased as compared with levels in cells cultured in normal media (Figure 4D). Our 
observations suggest that the ER stress pathway likely regulates ERLIN2 protein expression 
through IRE1α-actived XBP1 in human breast epithelial cells. 

Figure 4 (A) The knockdown of the IRE1α RNase activity (K907A) reduced levels of 
ERLIN2 protein in SUM-44 cells. Forced expression of wild-type IRE1α (B) and its 
substrate, spliced XBP1 (C), leads to increased expression of ERLIN2 at protein level in 
MCF10A cells. (D) ERLIN2 expression in MCF10A cells was analyzed by western blot after 
culture 48 hours in insulin- or EGF-depleted media, compared to that in normal culture media 

ERLIN2 promotes breast cancer cell survival 

Next, we tested if amplification and over expression of ERLIN2 enhances the resistance to a 
variety of stressors to promote cancer cell survival. Figure 5A shows the IC50 values for the 
ER stress-inducing reagent Tunicamycin (Tm), in ten breast cancer cell lines as well as in the 
nontransformed human mammary epithelial cell line MCF10A. SUM-44 and SUM-225 cells, 
which have ERLIN2 amplification, had significantly higher TM IC50 values than cell lines 
without ERLIN2 amplification (P < 0.05). We obtained similar results with Thapsigargin (Tg) 
treatment of SUM-225 cells (data no shown). Expression of the CCAAT/enhancer-binding 
protein (C/EBP) homology protein (CHOP) is characteristic of the ER stress–mediated 
apoptotic pathway. In response to treatment with Tm or Tg, expression of CHOP 
dramatically increased in control MCF10A cells (Figure 5B). However, induction of CHOP 
by Tm and Tg treatment was weaker or barely detectable in SUM-44 and SUM-225 cells 
(Figure 5B). Next, to determine whether suppressing ERLIN2 in breast cancer cells re-
sensitize them to ER-stress, we challenged stable ERLIN2-knockdown SUM-44 and SUM-
225 cells with Tm and Tg for 72 hours and evaluated their viability using the MTT assay. 
Knockdown of ERLIN2 resulted in increased sensitivity to Tm or Tg -induced cell death 
(Figure 5C). Our data suggested that over expression of ERLIN2 may facilitate the adaptation 
of breast epithelial cells to ER stress by supporting cell growth. Future investigations are 
required to more precisely address the mechanism by which ERLIN2 promotes breast cancer 
cell survival. 

Figure 5 (A) IC50 values for the ER stress-inducing reagent Tm, in ten breast cancer cell 
lines as well as in the MCF10A cells. (B) The expression level of CHOP in SUM-225, 
SUM-44 breast cancer cells and MCF10A control cells was analyzed with Western blot 
after Tm (500 ng) or Tg (400 nM) treatment. (C) Cell viability of ERLIN2 knockdown and 
control SUM-225 cells was measured with MTT assays after exposure to different 
concentrations of the Tm or Tg for 72 hours 

Expression of ERLIN2 in breast tissues: Carcinomas and normal 

We evaluated the expression of ERLIN2 in normal and cancerous human breast tissues using 
immunohisyochemistry (IHC) in breast cancer tissue arrays. We first confirmed the 
specificity and sensitivity of the ERLIN2 antibody for visualizing ERLIN2 expression in 
formalin-fixed, paraffin-embedded breast cancer cell lines. Consistent with the 
immunoblotting data, SUM-225 cells displayed significantly higher levels of positive staining 
as compared with the MCF10A control cells (Additional file 2: Figure S4). The tissue array 
included 34 breast carcinomas and 17 normal breast tissue, which included 14 cases of 
adjacent normal counterparts. ERLIN2 expression was scored based on the staining intensity: 
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0 (negative), 1 + (weak), 2 + (low); 3+ (moderate) or 4 + (strong). In breast carcinomas 
samples, 11 (32.4%) stained ERLIN2 strongly and 13 (38.2%) moderately (Figure 6, 
Additional file 2: Table S2 and Figure S5). In contrast, no strong or moderate staining was 
observed in the 17 normal breast tissues. The staining intensities of ERLIN2 were 
significantly higher in tumor cells than in normal tissue cells (P = 0.001).  

Figure 6 Immunohistotochemical staining of ERLIN2 protein on a representative HBC 
sample and a normal control 

 

Discussion 

The 8p11-12 amplicon in HBC has been the subject of a number of studies using high-
resolution genomic analysis of copy number and gene expression [3-6,42,43]. We previously 
found that the 8p11-12 amplicon has a highly complex genomic structure and that the size of 
the amplicon in three HBC lines, SUM-44, SUM-52 and SUM-225, is highly variable [6,31]. 
Moreover, the sub-amplicon of 8p11-12 that carries the ERLIN2 gene amplification was more 
frequently identified in HBCs [4,7]. Previous studies have demonstrated that the 8p11-12 
amplicon occurs mainly in the luminal subset of breast cancer cells, such as SUM-44 cells, a 
subset that also expresses the estrogen receptor [3,4,7,44-46]. Here we report that the co-
amplification of the ERLIN2 region occurred in a subset of HER2-amplified breast cancer 
cells, including SUM-225 cells. Our recent studies with Her2 model cells demonstrated that 
over expression of Her2 alone is not sufficient to induce full transformation in vitro and is not 
tumorigenic in vivo [47]. In contrast, Her2-amplified SUM225 breast cancer cells are fully 
transformed in vitro and tumorgic in vivo [48]. In this study, in vitro transforming and 
shRNA assays provided evidence that ERLIN2 is the most likely non- classical oncogene 
within this 8p11-12 minimal common amplified region. Our results suggest that the ERLIN2 
plays a role in cell proliferation and maintenance of transforming phenotypes in breast cancer 
cells with the 8p11-12 amplification. 

ERLIN2 belongs to a larger family of proteins that share an evolutionarily conserved 
stomatin/prohibitin/flotillin/HflK/C (SPFH) domain. SPFH-containing proteins localize to 
different membranes, but have common characteristics. For example, N-terminal sequences 
are required for subcellular localization and membrane attachment, while the coiled-coil 
motifs located at the C-terminal side of SPFH domain mediate the assembly of high-
molecular-weight complexes [49]. ERLIN2 and its homologue ERLIN1 were originally 
identified as components of lipid rafts that localize to the ER [36]. More recently, ERLIN2 
has been recognized as a novel mediator of ERAD [34-36,50]. ERLIN2 binds to activated 
IP3Rs and other ERAD substrates, leading to polyubiquitination and subsequent degradation 
of these substrates [34,35]. 

Of particular interest in this study, we found that the UPR pathway modulated ERLIN2 
protein expression in breast cancer cells through the IRE1α/XBP1 axis. Forced expression of 
IRE1α, or spliced XBP1, the target of IRE1α under ER stress, up-regulated expression of the 
ERLIN2 protein, while knockdown of IRE1α RNase activity decreased ERLIN2 expression 
in the ERLIN2-amplified breast cancer cells. These gain- and loss-of-function studies 
provided support that the IRE1α/XBP1-mediated UPR pathway in HBC regulated production 
of ERLIN2. Importantly, our study also showed that the depletion of nutrient and growth 
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signals, a condition that is associated with oncogenesis and ER stress, can increase ERLIN2 
production in breast epithelial cells. However, over expression of IRE1α or spliced XBP1 did 
not increase expression of the ERLIN2 mRNA level, suggesting regulation at the post-
transcription level. In the present study, we also showed that expression of primary breast 
cancer cells significantly up regulated ERLIN2 protein expression as compared with normal 
breast cells. As we had described earlier, amplification of the ERLIN2 gene, as part of the 
8p11-12 amplicon, occurs in approximately 15% of human breast cancer. It is reported that 
XBP1 is over expressed in aggressive breast cancer and associated with cancer cell survival 
and therapy resistance [51]. In the ten SUM breast cancer cell lines we investigated, three 
lines have both ERLIN2 gene amplification and up-regulation of activated XBP1, resulting in 
dramatically high-level expression of ERLIN2 protein. In contrast, two lines with up-
regulation of the XBP1, but no ERLIN2 gene amplification, had moderately high-expression 
of the ERLIN2 protein. Taken together, our results raise an intriguing notion that the breast 
cancer cells may utilize gene amplification and the UPR pathway to regulate ERLIN2 protein 
over-production under oncogenic stress conditions. 

In response to ER stress, cells activate UPR to reprogram gene transcription and translation. 
Depending on the type and/or degree of the stress, cells can differentially activate the UPR 
pathways in order to make survival or death decisions [52]. The literature indicates that the 
UPR branch, through IRE1α/XBP1, plays a critical role in cell adaptation to ER stress by 
increasing protein refolding and degradation of misfolded proteins, and by bolstering the 
protein-folding capacity and secretion potential of the ER [20,52,53]. Cancer cells may adapt 
to the cellular stress and evade stress-induced apoptotic pathways by differentially activating 
the UPR branches. Indeed, tumor microenvironment has been characterized by a ‘baseline’ 
level of ER stress response that promotes tumor development and metastasis [20]. 

Conclusions 

In the present study, we show that over expression of ERLIN2 may facilitate the adaptation 
of breast epithelial cells to ER stress by supporting cell growth and protecting the cells from 
ER stress-induced apoptosis. These results suggest that ERLIN2 confers a selective growth 
advantage for breast cancer cells by facilitating a cytoprotective response to various cellular 
stresses associated with oncogenesis. The information provided here sheds new light the 
mechanism of breast cancer malignancy. 
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